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Introduction. One of the effective means of thermal protection of hypersonic flight 
vehicle is the use of massive injection. A number of studies (e.g., [1-4]) is devoted to 
the investigation of the associated gasdynamic problem. Asymptotic solutions to Navier-- 
Stokes equations have been found in these studies in the neighborhood of the bluntness with 
the condition that M~ >> i, (P~/Pz) << I, Rel >> i, (Vw/U~) >> i/R~el, where M~ is the free 
stream Math number, u= is the free stream velocity, p~ is the free stream density, p: is the 
gas density behind the shock, Re~ is the Reynolds number based on the free stream velocity 
and density, nose radius, and coefficient of viscosity at stagnation temperature, and Vw is 
the injection velocity at the body surface. Besides, a classification of possible flow con- 
ditions in the viscous hypersonic flow past blunt bodies is given in [4]. The flow is as- 
sumed to be laminar. The absorption of fluid injected in the neighborhood of the small 
bluntness by the boundary layer in the lateral surface of the cone is studied in the present 
paper. Laminar, viscous hypersonic flow past a blunt cone is considered. The fluid is in- 
jected in the neighborhood of the nose so that the boundary layer is displaced from the sur- 
face and becomes a mixing layer whose thickness is much less than that of the injected fluid. 
In its turn, the thickness of the injected fluid is much less than the thickness of the shock 
layer, and the flow in it is described by equations of inviscid boundary layer. The injected 
layer remains inviscid for a certain distance downstream and on the lateral surface of the 
cone where there is no injection. However, this layer of fluid is later absorbed by the 
boundary layer on the surface of the body and by the mixing layer at the contact boundary 
with the hot gas behind the shock wave. 

i. Flow in the Neighborhood of the Blunt Nose. The flow in the neighborhood of the 
blunt nose is estimated (the region O, Fig. i). Let r be the nose radius; e = 0(i) is the 
semivertex angle of the cone; y and p: are the adiabatic index and density behind the shock 
wave; ~I is the coefficient of viscosity at stagnation temperature; Pw, Vw, Tw, and Yw are 
the density, velocity, temperature, and the adiabatic index of the injected fluid. The char- 
acteristic value of the pressure in the shock layer is Pl ~ P~u2~. The characteristic value 
of Reynolds number in the shock layer at the contact boundary is 

Re1 = plulr/~l  = R e o / ] / r ~  

where ul - u~/~, e = (y -- l)/(y + i), Reo = 0~u~r/~1. Thus, the mixing layer thickness is 

51 .~ r~ ]/rRe 1. 
\ 

I t  i s  p o s s i b l e  t o  u s e  B e r n o u l l i ' s  e q u a t i o n  and  t h e  e q u a t i o n  o f  s t a t e  t o  o b t a i n  t h e  f o l l o w i n g  
e s t i m a t i o n  f o r  d e n s i t y  and  t h e  s t r e a m w i s e  v e l o c i t y  c o m p o n e n t  uw i n  t h e  i n j e c t e d  l a y e r :  

P~/Pl ~ e/tel, u~  ... u~  ] / ~ ,  ( 1 . 1 )  

w h e r e  r = (Yw -- 1 ) / ( Y w +  1 ) ;  t = 2CPwTw/u2~ i s  t h e  t e m p e r a t u r e  f a c t o r .  

The  m a s s  f l o w  i n  t h e  s h o c k  l a y e r  a t  t h e  n o s e  

The m a s s  f l o w  o f  t h e  i n j e c t e d  f l u i d  

~ w ~ r ~ p w v w .  

The nondimensional injection parameter is thus 
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If the continuity equation and relation (i.i) are used, then it is possible to make the 
following estimate for the thickness of the injected layer: 

6B ~ rg V~-li. 

Stipulating the condition that the thickness of the injected layer is much less than the 
thickness of the shock layer 6 ~ re: 

(6./6) ~ g ~ f  i8l/S 2 << i .  

On the other hand, if the thickness of the mixing layer ~ is required to be much less than the 
thickness of the injected layer: 

(6x/6.) = i / (g  V t%R%) << I .  ( 1 . 2 )  

Here and in what follows we shall assume that s = 0(i), ci = 0(i), t = 0(I). In satisfying 
condition (1.2) the flow in the injected layer in the neighborhood of the nose will be in- 
viscid, since the characteristic Reynolds number in the injected laye~ is 

Rew=Re~ ~ ~ R e l  (1.3) 

and the ratio of the boundary layer thickness 6 w in the injected layer (where there is no in- 
jection) to the thickness of the mixing layer ~: 

( 8~/  6~) ~ ( ts,/e)a/4(9 ~/~)~/2  = 0( t ) .  ( 1 . 4 )  

Let the coordinate ~ be measured along the blunt surface of the cone, the coordinate 
be measured normal to the cone surface. We introduce the following strained coordinates and 
asymptotic expansions for the flow in the injection layer at the nose: 

u=uoo],/-t-~i u + . . . .  F =  u ~ g t e i  v + . . . .  

-p ~- po~u~p + . . . .  p =  (p~/te~) p + . . .  

(1.5) 

If equations (1.5) are substituted in Navier--Stokes equations and the limiting approach is 
carried out, 

g - + O ,  R e i - +  oo , Moo--)- oo 

under conditions (1.2)-(1.4), then it is possible to get the following system of equations 
for the inviscid boundary layer describing the flow in the injection layer: 

a (oub_.__) + a (pvb) _ O, 
Ox 3y 

I o. o u I _  op Op=O, 
plu~+vou] o~' ou 

u~ +v~  

(1.6) 

851 



where b is the distance from the axis of symmetry of the cone to its surface. 

Boundary conditions for this system of equations have the form 

v ~ v ( x ,  0 ) ,  9 ~ p(x ,  0 ) ,  u = 0 ( 1 . 7 )  

with 0 < x < x~, u = v = 0 when x > x~. The function p(x) should be determined by matching 
the asymptotic expansions for the mixing zone and for the shock layer. This operation does 
not in any way differ from the matching of asymptotic expansions in [4]. 

Actually, if the above estimate for the flow in the neighborhood of the nose (region 0) 
is used, then it is possible to introduce the following strained coordinates and asymptotic 

expansions: 

= r x o ,  g = r~go - -  6~ ,  ( 1 . 8 )  

= U~Uo + . . . .  ~ = ~U~Vo + . . . .  

- -  2 

p = 9 = U ~ p o  + . . . .  9 - -  e - ~ 9 ~ 9 o  + . . . .  

After substituting these expressions in Navier--Stokes equations and carrying out the 
limiting solutions as M~ § ~, Re~ § ~, and s = 0(i), we get Euler's ordinary differential 
equations. The external boundary conditions for this system of equations are the Hugoniot 
conditions on the shock wave, and at Yo = 0, v = 0. The solution to this system of equations 

ensures uo(xo, Yo § 0) ~ v~-r and po(xo, yo § 0) ~ i. 

The mixing layer whose thickness has been estimated above to be 6~ is located at the 
boundary between the shock layer (region 0) and the injection layer. It is possible to in- 
troduce the following strained coordinates and asymptotic expansions for the mixing layer: 

X = FXs~  

u = u ~ V - d U s  + . . . .  
2 

p = 9 ~ u ~ p s  + . . . .  

= + . . . .  

= 61g s - -  6~, 

= 6~u~ ],/~'vs + . . . .  

f) = e - X p . o p s  + . . . .  

= p~t, t s  + . . . .  

(1.9) 

where ~B is the thickness of the injected layer. 

If these expressions are substituted in Navier--Stokes equations and the limiting solution 
M~ § ~, Rel § ~, g + 0, ~ = 0(i), e~ = 0(I), t = 0(I) is applied, then it is possible to ob- 
tain boundary layer equations for the flow in the mixing zone. Boundary conditions for these 

equations are found by matchin~ asymptotic expansions (1.8) and (1.9), and we get us(xs, 

YS § ~) = uo(xo, yo § 0), HS(xS, YS § ~) = Ho(xo, yo § 0), pS(xS) = po(xo, Yo § 0). Match- 
ing asymptotic expansions (l.5):and (1.9), we find internal boundary conditions us(xs, YS § 
--~) = ~t-~lu(x, y § 0), HS(X S, YS § = t and the magnitude of the pressure p(x) = po(xo) = 
ps(xs). The above analysis differs very marginally from [4] and hence it is in the nature 

of a summary. 

If it is assumed that pressure p(x) is specified, then it is possible to write the fol- 

lowing solutions to the equations (1.6): 

?w -I 1 

Yw ~w ~w 
(p /p~w)  = cl  ( % 4  + vFjn-7- ~ P c~ (~) = G (% (1. lO) 

where ~ is the stream function. The functions CI(~) and C2(~) can be determined using bound- 
ary conditions (1.7). The particular form of the solution to (i.i0) will be obtained below 
while considering the absorption of the injection layer by the boundary layer at the cone 
lateral surface. It is obvious that the injection layer remains inviscid even at a certain 
distance downstream from the injection region. Then, as a result of the effect of separation 
and growth of boundary layer thickness, the injection layer will be absorbed by the viscous 

flow at the lateral surface of the cone. 

2. Absorption of Injection Layer by the Boundary Layer at the Lateral Surface of the 
Cone~ Let the length along the generatrix of the cone on which the absorption of the injec- 
ti--on-layer by the boundary layer takes place, be L = Kr, where K >> I. The condition that 
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the fluid in the injection layer is completely absorbed by the boundary layer at the lateral 
surface of the cone, can be written in the form of the equation of mass flux: 

nr2p~vw ~ 2 ~ K r  sin Ot)~u~fi~, 

where ~2 is the boundary layer thickness at the side of the cone. All the estimates for flow 
variables obtained in the neighborhood of the nose remain valid even at the side surface of 
the cone because the semivertex angle of the cone e = 0(i). Hence it follows that 52 ~ ~w~. 
Thus we get the similarity parameter characterizing the absorption of the injection layer by 
the boundary layer: 

2sb~OK 3/2 
Ag 

This parameter is the ratio of boundary-layer thickness to the thickness of the injection 
layer at the lateral surface of the cone when these quantities are of the same order: Ag = 
0(i). Hence it is possible to obtain an estimate of the characteristic length L over which 
absorption of the injection layer by the boundary layer and the mixing layer takes place: 

} . (2.!) 

At lengths an order of magnitude less than L in the equation (2.1), but more than r by 
an order of magnitude, the flow pattern remains the same as in the nose region. We note 
that the cone surface pressure along these distances and distances determined by Eq. (2.1) is 
the same as that for the sharp cone since the effect of bluntness affects the inviseid flow 
past a body of revolution only at certain amount of bluntness [5]. 

We choose I such that r << 1 << L, where L is determined from Eq. (2.1) and this means 
that AZ + 0. At these distances the inviscid outer flow behind the shock wave corresponds to 
hypersonic flow past a sharp cone. Estimates for flow parameters remain as before, but the 
characteristic length is 1. Thus, the form of the asymptotic expansions is the same as in 
the region 0 [Eq. (1.8)], only the quantity r is replaced by l, Reynolds number is based on 
the length I. As a result, we obtain Euler equations describing the flow behind the shock 
wave where the excellent approximate formula for pressure is that of the hypersonic flow past 
a tangential wedge (p = sin29). 

Fluid, passing through the shock wave near the nose, forms an entropy layer at the side 
of the cone with a thickness of (63//) ~ sK -=, K = l/r. The thickness of the fluid layer in- 
jected near the nose is (6B~//) ~ g tC~E~K -~ at the side of the cone. Thus, the entropy layer 
is much thicker than the injected layer and hence the entropy layer will not be absorbed by 
the mixing layer. The characteristic velocity in the entropy layer is -u= and the density 
is ~~/s. 

Strained coordinates and as~nptotic expansions in the entropy layer: 

-u =-  u,~u3 + . . . .  ~ - =  (u~3)~3 + . . . .  

-p = poou~p3 + . . . .  ,~ = ( , o ~ / s )  P3 + - . -  

(2.2) 

If these expressions are substituted in Navier--Stokes equations, with M~ + ~, Rel + ~, Ag + 0 
it is possible to obtain the equations of inviscid boundary layer whose solution has the func- 
tional form (i.i0). The initial conditions are obtained by matching asymptotic expansions 
(2.2) and (1.8), and matching pressure in the shock layer on a sharp cone we get p3 = sin 2 ~. 
The quantity 6BI is found by matching expansions for the injection layer. 

The thickness of the mixing layer and the wall boundary layer at distance 1 is on the 
order of ~l ~ ~r K = 1/r. Asymptotic expansions for the injection layer have the form 
(1.9) with the replacement of r by 1 and ~ by 5 I. The pressure in the injected layer is 
equal to the pressure in the entropy layer and the inner boundary conditions have to be found 
by matching asymptotic expansions for the injected and mixing layers. 

The strained coordinates and asymptotic expansions for the injected layer at distances 
1 have the form 
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= + . . . .  ; - =  + . . . .  

- 2 
p = p ~ u ~ p ~ l  + . . . .  9 = (p~/tel) 9,1 + . . .  

( 2 . 3 )  

After substituting these expressions in Navier--Stokes equations with M~ ~ ~, g + O, Re~ § 
(I/r) § ~, we get equations for the inviscid boundary layer whose solution is described by 
Eq. (i.i0). Matching asymptotic expansions (2.2) and (2.3) we get the value of pressure in 
the injected layer. The initial conditions for these equations can be obtained by matching 
asymptotic expansions (1.5) for the injected layer at the nose with the asymptotic expan- 
sions (2.3). 

All this analysis makes it possible to explain the problem of initial conditions for the 
equations describing the absorption of the injected layer at the cone lateral surface. 
Finally, we note that asymptotic expansions (2.2) for the entropy layer at the side of a 
blunt cone at distances I are valid even at distances L, determined by the expression (2.1), 
since at these distances the thickness of the entropy layer is much larger than the mixing 
layer. 

In order to describe the absorption of the injected layer at the lateral surface of the 
cone by the boundary layer and the mixing layer, we introduce the following strained coordi- 
nates and asymptotic expansions: 

x ~_ L x 2 ,  

= + �9 � 9  

= poouoop2 + . . . ,  

---- ( u ~ / 2 ) Y  2 + . . . .  

~ - =  ~ V ~ ' ~  + - . . ,  

= ( o ~ , t ~ 0  p~ + . . . .  

= ,ua~t2 + . . .  

(2.4) 

If relation (2.4) is substituted in Navier--Stokes equations and the limiting approach K § m, 
M~o + ~, Re~ + ~, g + O, t =~0(I), e = 0(i), ~ = O(I), Ag = O(I) is taken, then it is pos- 
sible to obtain the following System of equations: 

ax~ Oy 2 

/ a~ 2 au~k ap~ + o ( a~._) OP2=o, 

(2.5) 

b2 i s  t h e  d i s t a n c e  f rom t h e  c o n e  a x i s  t o  i t s  s u r f a c e .  

A s y m p t o t i c  e x p a n s i o n s  ( 2 . 4 )  and  b o u n d a r y - l a y e r  e q u a t i o n s  ( 2 . 5 )  a r e  c o r r e c t  n o t  o n l y  f o r  
t h e  i n j e c t e d  l a y e r  b u t  a l s o  f o r  t h e  m i x i n g  z o n e ,  s i n c e  i t s  t h i c k n e s s  i s  o f  t h e  same o r d e r  a s  
t h a t  o f  t h e  i n j e c t e d  l a y e r .  A c t u a l l y ,  t h e  d i s p l a c e m e n t  t h i c k n e s s  a t  t h e  s i d e s  o f  t h e  c o n e  
a t  a d i s t a n c e  L i s  8f ~ L ~  RC~ef ,  w h e r e  Ref  = ReIK,  i . e ,  Ref  ~ RewK a n d ,  on t h e  o h t e r  h a n d ,  
s i n c e  t = 0 ( 1 ) ,  e = 0 ( 1 ) ,  e l  = 0 ( 1 ) ,  t h e  v e l o c i t y ,  d e n s i t y ,  and  e n t h a l p y  a r e  o f  t h e  same 
o r d e r .  

B o u n d a r y  c o n d i t i o n s  a t  t h e  c o n e  s u r f a c e  h a v e  t h e  fo rm 

y2  = 0 ,  u2  = v2 = 0 ,  H 2  = t .  ( 2 . 6 )  

The outer boundary conditions for the system of equations (2.5) can be obtained by combining 
asymptotic series (2.4) with the inviscid solution for the flow past a sharp cone (2.1) 
(at lengths L): 

y~-+ oo, u 2 - +  ~ )  cos 0, P2 ~ sin2 0, H 2 - +  i .  ( 2 . 7 )  

The o u t e r  b o u n d a r y  c o n d i t i o n s  f o r  t h e  s y s t e m  o f  e q u a t i o n s  ( 2 . 5 )  c a n  be  o b t a i n e d  by  m a t c h i n g  
t h e  a s y m p t o t i c  e x p a n s i o n s  ( 2 . 4 )  w i t h  i n v i s c i d  s o l u t i o n  f o r  t h e  f l o w  p a s t  t h e  l a t e r a l  s u r f a c e  
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of the cone by inviscid injected layer (2.3) and inviscid outer flow behind the shock wave 
(2.2), i.e., with the solution at distances l such that r << l << L. As a result we get 

U2'(0 ~ g2) 
U(y~), } O ~ y , ~  Y~,o, (2.8) 

H~ (0, g2) = t, 

~ (0, u2) = V ~  cos 0, /  
H 2 (0, yJ  = t ,  I Y2 > g2o" 

Thus, the boundary-value problem (2.5)-(2.8) differs from the usual boundary-layer prob- 
lem only by the presence of non homogeneous initial conditions (2.8). 

As a computational example for the absorption of injected layer by the boundary layer 
the following case was chosen: cone semivertex angle 8 = 45 ~ , y = 1.2, Yw = 1.4, temperature 
factor t = i, and Prandtl number Pr = i, change in viscosity with enthalpy is such that p~ = 
const, the constant is the same for both the fluids. In particular, the following type of 
injection at the spherical nose is chosen: 

p(x, O) = 1, v(x, O) = 1, 0 "~ x ~ Xlo, (2 .9)  

where % = ~Xlo = 45 ~ . 

A good approximation for the pressure distribution at the nose surface is the Newton 
formula p(x) = cos 2 x. Using this formula, and the boundary conditions (2.9), the solution 

to (I.I0) is obtained in the form 

?w_1 
ff 2y w 

u ( x , r  V ~ ( 1 + r  ~)2'VWp ~ (x)J, 

where ~ = cos x' -- I is the stream function. 

Let the formula for pressure at the cone lateral surface pl be given by pl = sin 2 e, 
which is valid for flow past a tangential wedge; then the velocity profile in the injected 
layer at the lateral surface of the cone has the form 

l 2(Tw--1)J 
V 2 y  w , . ul (xD1h) = ~,--t  (1 + $1) 2 4- (t 4- tlh) 2vw (sin O) vw 

If Dorodnitsyn--Lees transformation is used, the boundary-value problem (2.5)-(2.8) is 

reduced to the form 

I ' "  + I / "  = 2~(I ' /"  - I / " ) ,  

/(o) = / ' ( o )  = o , / 7 0 0 )  = 1, 

/ '  = uJuz ,  uz = t ~  cos 0, 

x2 Y2 
= P2wlX2wutb~dx2, n = ~ pdy'2' ( -o--ii' ()" og" 

0 0 

In  o r d e r  to  s o l v e  the  b o u n d a r y - v a l u e  problem (2 .10)  w i t h  i n i t i a l  c o n d i t i o n s  ( 2 . 8 ) ,  t he  
p r o c e d u r e  g i v e n  in  [6] was u s e d .  Computed r e s u l t s  a r e  g i v e n  in  F i g s .  2 and 3. F i g u r e  2 

(2.10) 
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shows the skin friction distribution along the wall and Fig. 3 shows the growth of the velo- 
city profile along the generatrix of the cone (a-d correspond to ~ = 0, 10 -2 , 1.2.10 -2, and 
3.10-2). The absorption takes place very rapidly by the length scale L. In conclusion, it 
is worth noting that, in the general case, the displacement process will be accompanied by 
chemical reactions and, strictly speaking, the entire analysis given above is valid only 
when the Lewis number Le = i. 
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UNSTEADY MOTION OF A CIRCULAR CYLINDER IN A TWO-LAYER LIQUID 

V. I. Bukreev, A. V. Gusev, and I. V. Sturova UDC 523.593 

We have performed a theoretical and experimental study of plane internal waves generated 
on the interface in a two-layer liquid by the unsteady translational motion of a submerged 
circular cylinder. At the present time wave formaton by such motion of a two-dimensional 
body has been analyzed theoretically only for the special case of a homogeneous liquid [i], 
and experimental research has been devoted mainly to the study of steady motion [2, 3]. 

We consider the linear formulation of the two-dimensional problem of wave flows gener- 
ated by a dipole with a time-dependent moment moving in the upper layer of a two-layer liquid. 
We assume that, as in an infinite homogeneous liquid, this is equivalent to the motion of a 
circular cylinder of radius R with the velocity U(t) [the dipole moment m(t) = 2~R2U(t), and 
coincides with the direction oflmotion of the cylinder]. We assume that the liquid is in- 
viscid and incompressible, and consists of two layers of different densities: p1(0 < y < HI) 
and P2 = p1(l + s), c > O(--H2 < y < 0). The y axis is directed vertically upward, and the 
horizontal x axis lies in the undisturbed interface. We assume that at time t = 0 a dipole 
with the variable moment m(t)[m(t) ~ 0 for t < O] with its axis in the positive direction 
of the x axis begins to act in the upper layer of liquid at the point x = O, y = h, so that 
its trajectory has the form x = c(t), y = h. 

We assume potential flow in each layer, and that the equations of motion have the form 

0 5 (x - -  c (t)) ~ .  5 (y - -  h) A v n  = - -  ? n m  ( t )  -dTx 

w i t h  t h e  b o u n d a r y  c o n d i t i o n s  

v~ = 0 at g = H1, 

v~=v~, p ~ \ ~ - g - 5 7 / j ~ = o  ~t y=o, 
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